bionty.DevelopmentalStage¶
- class bionty.DevelopmentalStage(name: str, ontology_id: str | None, abbr: str | None, synonyms: str | None, description: str | None, parents: list[DevelopmentalStage], source: Source | None)¶
Bases:
BioRecord,TracksRun,TracksUpdatesDevelopmental stages - Human Developmental Stages, Mouse Developmental Stages. # noqa.
Notes
For more info, see tutorials Manage biological registries and DevelopmentalStage.
Bulk create DevelopmentalStage records via
from_values().Examples
>>> record = bionty.DevelopmentalStage.from_source(name="neurula stage") >>> record.save()
Simple fields¶
- uid: str¶
A universal id (hash of selected field).
- name: str¶
Name of the developmental stage.
- ontology_id: str | None¶
Ontology ID of the developmental stage.
- abbr: str | None¶
A unique abbreviation of developmental stage.
- synonyms: str | None¶
Bar-separated (|) synonyms that correspond to this developmental stage.
- description: str | None¶
Description of the developmental stage.
- created_at: datetime¶
Time of creation of record.
- updated_at: datetime¶
Time of last update to record.
Relational fields¶
- parents: str | None¶
Parent developmental stage records.
Class methods¶
- classmethod add_source(source, currently_used=True)¶
Configure a source of the entity.
- Return type:
- classmethod df(include=None, features=False, limit=100)¶
Convert to
pd.DataFrame.By default, shows all direct fields, except
updated_at.Use arguments
includeorfeatureto include other data.- Parameters:
include (
str|list[str] |None, default:None) – Related fields to include as columns. Takes strings of form"ulabels__name","cell_types__name", etc. or a list of such strings.features (
bool|list[str], default:False) – IfTrue, map all features of theFeatureregistry onto the resultingDataFrame. Only available forArtifact.limit (
int, default:100) – Maximum number of rows to display from a Pandas DataFrame. Defaults to 100 to reduce database load.
- Return type:
DataFrame
Examples
Include the name of the creator in the
DataFrame:>>> ln.ULabel.df(include="created_by__name"])
Include display of features for
Artifact:>>> df = ln.Artifact.df(features=True) >>> ln.view(df) # visualize with type annotations
Only include select features:
>>> df = ln.Artifact.df(features=["cell_type_by_expert", "cell_type_by_model"])
- classmethod filter(*queries, **expressions)¶
Query records.
- Parameters:
queries – One or multiple
Qobjects.expressions – Fields and values passed as Django query expressions.
- Return type:
- Returns:
A
QuerySet.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ln.ULabel(name="my label").save() >>> ln.ULabel.filter(name__startswith="my").df()
- classmethod from_source(*, name=None, ontology_id=None, abbr=None, source=None, mute=False, **kwargs)¶
Create a DevelopmentalStage record from source based on a single identifying field.
- Parameters:
name (
str|None, default:None) – Name of the developmental stage (e.g. “neurula stage”, “gastrula stage”)ontology_id (
str|None, default:None) – Developmental stage ontology ID (e.g. “HsapDv:0000004”)abbr (
str|None, default:None) – Unique abbreviation of developmental stage source: Optional Source record to usemute (
bool, default:False) – Whether to suppress logging
- Return type:
DevelopmentalStage|list[DevelopmentalStage] |None- Returns:
A single DevelopmentalStage record, list of DevelopmentalStage records, or None if not found
Examples
>>> record = DevelopmentalStage.from_source(name="neurula stage") >>> record = DevelopmentalStage.from_source(ontology_id="HsapDv:0000004")
- classmethod from_values(values, field=None, create=False, organism=None, source=None, mute=False)¶
Bulk create validated records by parsing values for an identifier such as a name or an id).
- Parameters:
values (
list[str] |Series|array) – A list of values for an identifier, e.g.["name1", "name2"].field (
str|DeferredAttribute|None, default:None) – ARecordfield to look up, e.g.,bt.CellMarker.name.create (
bool, default:False) – Whether to create records if they don’t exist.organism (
Record|str|None, default:None) – Abionty.Organismname or record.source (
Record|None, default:None) – Abionty.Sourcerecord to validate against to create records for.mute (
bool, default:False) – Whether to mute logging.
- Return type:
- Returns:
A list of validated records. For bionty registries. Also returns knowledge-coupled records.
Notes
For more info, see tutorial: Manage biological registries.
Examples
Bulk create from non-validated values will log warnings & returns empty list:
>>> ulabels = ln.ULabel.from_values(["benchmark", "prediction", "test"], field="name") >>> assert len(ulabels) == 0
Bulk create records from validated values returns the corresponding existing records:
>>> ln.save([ln.ULabel(name=name) for name in ["benchmark", "prediction", "test"]]) >>> ulabels = ln.ULabel.from_values(["benchmark", "prediction", "test"], field="name") >>> assert len(ulabels) == 3
Bulk create records from public reference:
>>> import bionty as bt >>> records = bt.CellType.from_values(["T cell", "B cell"], field="name") >>> records
- classmethod get(idlike=None, **expressions)¶
Get a single record.
- Parameters:
idlike (
int|str|None, default:None) – Either a uid stub, uid or an integer id.expressions – Fields and values passed as Django query expressions.
- Return type:
- Returns:
A record.
- Raises:
lamindb.errors.DoesNotExist – In case no matching record is found.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ulabel = ln.ULabel.get("FvtpPJLJ") >>> ulabel = ln.ULabel.get(name="my-label")
- classmethod import_source(source=None, ontology_ids=None, organism=None, ignore_conflicts=True)¶
Bulk save records from a Bionty ontology.
Use this method to initialize your registry with public ontology.
- Parameters:
ontology_ids (
list[str] |None, default:None) – List of ontology ids to save.organism (
str|Record|None, default:None) – Organism name or record.source (
Source|None, default:None) – Source record to import records from.ignore_conflicts (
bool, default:True) – Whether to ignore conflicts during bulk record creation.
Examples
>>> bionty.CellType.import_source()
- classmethod inspect(values, field=None, *, mute=False, organism=None, source=None, strict_source=False)¶
Inspect if values are mappable to a field.
Being mappable means that an exact match exists.
- Parameters:
values (
list[str] |Series|array) – Values that will be checked against the field.field (
str|DeferredAttribute|None, default:None) – The field of values. Examples are'ontology_id'to map against the source ID or'name'to map against the ontologies field names.mute (
bool, default:False) – Whether to mute logging.organism (
str|Record|None, default:None) – An Organism name or record.source (
Record|None, default:None) – Abionty.Sourcerecord that specifies the version to inspect against.strict_source (
bool, default:False) – Determines the validation behavior against records in the registry. - IfFalse, validation will include all records in the registry, ignoring the specified source. - IfTrue, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against bionty/public sources.
- Return type:
See also
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> ln.save(bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol")) >>> gene_symbols = ["A1CF", "A1BG", "FANCD1", "FANCD20"] >>> result = bt.Gene.inspect(gene_symbols, field=bt.Gene.symbol) >>> result.validated ['A1CF', 'A1BG'] >>> result.non_validated ['FANCD1', 'FANCD20']
- classmethod lookup(field=None, return_field=None)¶
Return an auto-complete object for a field.
- Parameters:
field (
str|DeferredAttribute|None, default:None) – The field to look up the values for. Defaults to first string field.return_field (
str|DeferredAttribute|None, default:None) – The field to return. IfNone, returns the whole record.
- Return type:
NamedTuple- Returns:
A
NamedTupleof lookup information of the field values with a dictionary converter.
See also
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> bt.Gene.from_source(symbol="ADGB-DT").save() >>> lookup = bt.Gene.lookup() >>> lookup.adgb_dt >>> lookup_dict = lookup.dict() >>> lookup_dict['ADGB-DT'] >>> lookup_by_ensembl_id = bt.Gene.lookup(field="ensembl_gene_id") >>> genes.ensg00000002745 >>> lookup_return_symbols = bt.Gene.lookup(field="ensembl_gene_id", return_field="symbol")
- classmethod public(organism=None, source=None)¶
The corresponding
bionty.base.PublicOntologyobject.Note that the source is auto-configured and tracked via
bionty.Source. :rtype:PublicOntology|StaticReferenceSee also
Examples
>>> celltype_pub = bionty.CellType.public() >>> celltype_pub PublicOntology Entity: CellType Organism: all Source: cl, 2023-04-20 #terms: 2698
- classmethod search(string, *, field=None, limit=20, case_sensitive=False)¶
Search.
- Parameters:
string (
str) – The input string to match against the field ontology values.field (
str|DeferredAttribute|None, default:None) – The field or fields to search. Search all string fields by default.limit (
int|None, default:20) – Maximum amount of top results to return.case_sensitive (
bool, default:False) – Whether the match is case sensitive.
- Return type:
- Returns:
A sorted
DataFrameof search results with a score in columnscore. Ifreturn_querysetisTrue.QuerySet.
Examples
>>> ulabels = ln.ULabel.from_values(["ULabel1", "ULabel2", "ULabel3"], field="name") >>> ln.save(ulabels) >>> ln.ULabel.search("ULabel2")
- classmethod standardize(values, field=None, *, return_field=None, return_mapper=False, case_sensitive=False, mute=False, public_aware=True, keep='first', synonyms_field='synonyms', organism=None, source=None, strict_source=False)¶
Maps input synonyms to standardized names.
- Parameters:
values (
Iterable) – Identifiers that will be standardized.field (
str|DeferredAttribute|None, default:None) – The field representing the standardized names.return_field (
str|DeferredAttribute|None, default:None) – The field to return. Defaults to field.return_mapper (
bool, default:False) – IfTrue, returns{input_value: standardized_name}.case_sensitive (
bool, default:False) – Whether the mapping is case sensitive.mute (
bool, default:False) – Whether to mute logging.public_aware (
bool, default:True) – Whether to standardize from Bionty reference. Defaults toTruefor Bionty registries.keep (
Literal['first','last',False], default:'first') –- When a synonym maps to multiple names, determines which duplicates to mark as
pd.DataFrame.duplicated: "first": returns the first mapped standardized name"last": returns the last mapped standardized nameFalse: returns all mapped standardized name.
When
keepisFalse, the returned list of standardized names will contain nested lists in case of duplicates.When a field is converted into return_field, keep marks which matches to keep when multiple return_field values map to the same field value.
- When a synonym maps to multiple names, determines which duplicates to mark as
synonyms_field (
str, default:'synonyms') – A field containing the concatenated synonyms.organism (
str|Record|None, default:None) – An Organism name or record.source (
Record|None, default:None) – Abionty.Sourcerecord that specifies the version to validate against.strict_source (
bool, default:False) – Determines the validation behavior against records in the registry. - IfFalse, validation will include all records in the registry, ignoring the specified source. - IfTrue, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against bionty/public sources.
- Return type:
list[str] |dict[str,str]- Returns:
If
return_mapperisFalse– a list of standardized names. Otherwise, a dictionary of mapped values with mappable synonyms as keys and standardized names as values.
See also
add_synonym()Add synonyms.
remove_synonym()Remove synonyms.
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> ln.save(bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol")) >>> gene_synonyms = ["A1CF", "A1BG", "FANCD1", "FANCD20"] >>> standardized_names = bt.Gene.standardize(gene_synonyms) >>> standardized_names ['A1CF', 'A1BG', 'BRCA2', 'FANCD20']
- classmethod using(instance)¶
Use a non-default LaminDB instance.
- Parameters:
instance (
str|None) – An instance identifier of form “account_handle/instance_name”.- Return type:
Examples
>>> ln.ULabel.using("account_handle/instance_name").search("ULabel7", field="name") uid score name ULabel7 g7Hk9b2v 100.0 ULabel5 t4Jm6s0q 75.0 ULabel6 r2Xw8p1z 75.0
- classmethod validate(values, field=None, *, mute=False, organism=None, source=None, strict_source=False)¶
Validate values against existing values of a string field.
Note this is strict_source validation, only asserts exact matches.
- Parameters:
values (
list[str] |Series|array) – Values that will be validated against the field.field (
str|DeferredAttribute|None, default:None) – The field of values. Examples are'ontology_id'to map against the source ID or'name'to map against the ontologies field names.mute (
bool, default:False) – Whether to mute logging.organism (
str|Record|None, default:None) – An Organism name or record.source (
Record|None, default:None) – Abionty.Sourcerecord that specifies the version to validate against.strict_source (
bool, default:False) – Determines the validation behavior against records in the registry. - IfFalse, validation will include all records in the registry, ignoring the specified source. - IfTrue, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against bionty/public sources.
- Return type:
ndarray- Returns:
A vector of booleans indicating if an element is validated.
See also
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> ln.save(bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol")) >>> gene_symbols = ["A1CF", "A1BG", "FANCD1", "FANCD20"] >>> bt.Gene.validate(gene_symbols, field=bt.Gene.symbol) array([ True, True, False, False])
Methods¶
- add_synonym(synonym, force=False, save=None)¶
Add synonyms to a record.
- Parameters:
synonym (
str|list[str] |Series|array) – The synonyms to add to the record.force (
bool, default:False) – Whether to add synonyms even if they are already synonyms of other records.save (
bool|None, default:None) – Whether to save the record to the database.
See also
remove_synonym()Remove synonyms.
Examples
>>> import bionty as bt >>> bt.CellType.from_source(name="T cell").save() >>> lookup = bt.CellType.lookup() >>> record = lookup.t_cell >>> record.synonyms 'T-cell|T lymphocyte|T-lymphocyte' >>> record.add_synonym("T cells") >>> record.synonyms 'T cells|T-cell|T-lymphocyte|T lymphocyte'
- delete()¶
Delete.
- Return type:
None
- import_from_source(source=None, ontology_ids=None, organism=None, ignore_conflicts=True)¶
- remove_synonym(synonym)¶
Remove synonyms from a record.
- Parameters:
synonym (
str|list[str] |Series|array) – The synonym values to remove.
See also
add_synonym()Add synonyms
Examples
>>> import bionty as bt >>> bt.CellType.from_source(name="T cell").save() >>> lookup = bt.CellType.lookup() >>> record = lookup.t_cell >>> record.synonyms 'T-cell|T lymphocyte|T-lymphocyte' >>> record.remove_synonym("T-cell") 'T lymphocyte|T-lymphocyte'
- set_abbr(value)¶
Set value for abbr field and add to synonyms.
- Parameters:
value (
str) – A value for an abbreviation.
See also
Examples
>>> import bionty as bt >>> bt.ExperimentalFactor.from_source(name="single-cell RNA sequencing").save() >>> scrna = bt.ExperimentalFactor.get(name="single-cell RNA sequencing") >>> scrna.abbr None >>> scrna.synonyms 'single-cell RNA-seq|single-cell transcriptome sequencing|scRNA-seq|single cell RNA sequencing' >>> scrna.set_abbr("scRNA") >>> scrna.abbr 'scRNA' >>> scrna.synonyms 'scRNA|single-cell RNA-seq|single cell RNA sequencing|single-cell transcriptome sequencing|scRNA-seq' >>> scrna.save()
- view_parents(field=None, with_children=False, distance=5)¶
View parents in an ontology.
- Parameters:
field (
str|DeferredAttribute|None, default:None) – Field to display on graphwith_children (
bool, default:False) – Whether to also show children.distance (
int, default:5) – Maximum distance still shown.
Ontological hierarchies:
ULabel(project & sub-project),CellType(cell type & subtype).Examples
>>> import bionty as bt >>> bt.Tissue.from_source(name="subsegmental bronchus").save() >>> record = bt.Tissue.get(name="respiratory tube") >>> record.view_parents() >>> tissue.view_parents(with_children=True)